Secti	on 8.2. Stokes' theorem	
We	learn:	
• !	Stokes' theorem is a generalization of	
	Green's theorem that works for curvy	
:	surfaces, not just flat surfaces.	
•	It needs orientation of the boundary of a	
:	surface specially chosen relative to the	
	orientation of the surface.	
• '	When to use it.	
• '	We don't need: Faraday's law,	
	interpretation of curl	
	The book has an approach to proving	
	Stokes' theorem. Read it if you want.	

Pre-class Warm-up!!!

Let S is the part of the sphere $x^2 + y^2 + z^2 = 2$ satisfying $z \le 1$ oriented with an outward normal vector.

Question: which picture shows the boundary orientation of ∂S?

a.

C

d. It isn't shown.

e. I don't remember

Stokes' Theorem.

Given

1. A vector field
$$F: \mathbb{R}^3 \to \mathbb{R}^3$$

2. An oriented surface S with boundary S points S parametrize S :

Then $F \cdot dS = \int \nabla_X F \cdot dS$

Boundary orientation: We have a Let $F(X,Y,Z) = (P(X,Y), Q(X,Y), O)$

We arient S so that S so that S we walk round if S so that S so that S so that S so that S so now left.

Soften S says S folk F and S so S so

Example: Find
$$\iint_S$$
 curl $F \cdot dS$ where $F(x,y,z) = (-y, x, e^{xyz})$ and S is the part of the sphere $x^2 + y^2 + z^2 = 2$ satisfying $z \le 1$ oriented with an outward normal vector.

Surfaces without boundary

like

Stokes says:
$$\iint \nabla_x F \cdot dS = \iint F \cdot ds = 0$$

Example: find $\iint_S F \cdot dS$ where $F(x,y,z) = (y z, z^2, x)$ and S is the sphere $x^2 + y^2 + z^2 = 9$.

Solution: We find that $F = \nabla \times G$ for some vector field G.

The divergence $\nabla \cdot F = \frac{dy^2}{dx} + \frac{dz^2}{dy} + \frac{dx}{dz}$

$$= 0 \quad \text{so } F = \nabla \times G \quad \text{for some } G.$$

Therefore IF. ds = ITVxG.ds = 0 because S has emply soundary,

Question: If S had been a torus instead of a sphere in the last example, do you think the integral would have been

 \sqrt{b} . = 0

a. > 0

Surfaces with multiple boundaries

Example: Find \iint_S curl $F \cdot dS$ where $F(x,y,z) = (0, z, xz^2)$ and S is the surface $x^2 + y^2 = 3 + \cos z$, $0 \le z \le 2\pi$ with outward normal.

Solution: Orient the boundary

The ct(t) = $(-2\cos(t), 2\sin(t), 2\pi)$ By Stokes: $0 \le \tau \le 2\pi$ $0 \le \tau \le 2$

Dottom: C, (t) = (2 cos(t), 2sin(t), 0)

$$= \int_{0}^{2\pi} (0, 2\pi, 0) \cdot (-2i\sigma(t), 2sin(t), 2\pi)$$

$$+ \int_{0}^{2\pi} (0, 0, 0) \cdot (2c\sigma(t), 2sin(t), 0) dt$$

$$= \int_{0}^{2\pi} (0, 0, 0) \cdot (2c\sigma(t), 2sin(t), 0) dt$$

$$= \int_{0}^{2\pi} (0, 0, 0) \cdot (2c\sigma(t), 2sin(t), 0) dt$$

$$= \int_{0}^{2\pi} (0, 0, 0) \cdot (2c\sigma(t), 2sin(t), 0) dt$$

$$= \int_{0}^{2\pi} (0, 0, 0) \cdot (2c\sigma(t), 2sin(t), 0) dt$$

$$= \int_{0}^{2\pi} (0, 0, 0) \cdot (2c\sigma(t), 2sin(t), 0) dt$$

$$= \int_{0}^{2\pi} (0, 0, 0) \cdot (2c\sigma(t), 2sin(t), 0) dt$$

Why Stokes' theorem works

The following is a variation of what it says in the book from page 440 onwards. They prove it for graphs of functions in Theorem 5, then give a more general version in Theorem 6 and say this is proved the same way.

Step 1: Divide the surface into pieces that are graphs of functions. Prove the theorem on each piece and add them together.

Pieces alled Sizes 2

Pieces called Sis, Sn

ST ST ST Si

Fids = D Si

Common boundaries cancel.

Step 2: Suppose S is the graph of a function g(x,y) on a domain D with boundary ∂D to which Green's theorem applies. We will deduce Stokes' Theorem from Green's Theorem.

S is z = g(x,y) and is parametrized Phi(x,y) = (x, y, g(x,y))

Now follow page 441 in the book

How many of the following did we use?	
a. Symmetry of the mixed partial derivatives	
b. The integrals do not depend on the	
parametrization (up to orientation)	
c. The chain rule	
d. Two of the above	
e. All of the above	
e. All of the above	